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Percolation clusters are probably the simplest example for scale-invariant structures which are ei-
ther governed by isotropic scaling laws (“self-similarity”) or—as in the case of directed percolation—
may display anisotropic scaling behavior (“self-affinity”). Taking advantage of the fact that both
isotropic and directed bond percolation (with one preferred direction) may be mapped onto cor-
responding variants of (Reggeon) field theory, we discuss the crossover between self-similar and
self-affine scaling. This has been a long-standing and yet unsolved problem because it is accompa-
nied by different upper critical dimensions: d. = 6 for isotropic and d? = 5 for directed percolation,
respectively. Using a generalized subtraction scheme we show that this crossover may neverthe-
less be treated consistently within the framework of renormalization group theory. We identify the
corresponding crossover exponent and calculate effective exponents for different length scales and
the pair correlation function to one-loop order. Thus we are able to predict at which characteristic
anisotropy scale the crossover should occur. The results are subject to direct tests by both computer
simulations and experiment. We emphasize the broad range of applicability of the proposed method.
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I. INTRODUCTION

In describing a large variety of patterns in nature con-
cepts from fractal geometry [1] have become of increas-
ing importance over the past years. The simplest kind
of scale invariance is self-similarity, i.e., invariance with
respect to homogeneous dilation or contraction. A sec-
ond kind of structure, which frequently appears in growth
models, are self-affine clusters, which we define as char-
acterized by anisotropic scaling (see Fig. 1).

Perhaps the most simple growth model which incorpo-
rates both of these fractal structures is percolation [2]. In
ordinary percolation, sites or bonds are filled at random
with probability p. The percolation process then pro-
ceeds along paths connecting occupied nearest neighbors.
The clusters formed by nearest-neighbor links are self-
similar, i.e., they display isotropic scaling. In directed
percolation [3] the links between nearest neighbors have
a bias in one preferred direction, such that the percola-
tion process advances along this direction only. (Often
this direction is referred to as the time direction ¢ and
therefore directed percolation proceeds in the direction
of increasing time.) The size of the clusters in the pre-
ferred direction is characterized by a length scale differ-
ent from that in the perpendicular direction. Figure 1
depicts typical clusters emerging from isotropic (a) and
directed (b) percolation, respectively.

If percolation in the positive ¢ direction is merely fa-
vored with a certain probability with respect to the neg-
ative t direction, but propagation “backward” in time is
still admitted, the situation will be more complicated. If
the “anisotropy” g is low, one expects almost isotropic
scaling behavior in a large region of the phase diagram.
However, when the critical region near the percolation
threshold p. is approached, self-affine scaling will become
apparent. Similarly, if p = p., and the percolation clus-
ters are viewed at a tiny length scale, hardly any de-
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viations from self-similarity will be noticeable. On the
other hand, if one proceeds to larger and larger scales,
anisotropic scaling will become more and more impor-
tant, until finally the asymptotic limit of directed perco-
lation is reached.

FIG. 1. Isotropic (a) and directed (b) percolation clusters.
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Our aim is to provide a quantitative description of the
ensuing crossover features from self-similar to self-affine
scaling, when either the length scale is varied, or the
threshold p. is approached, for a biased percolation prob-
lem. More precisely, we are going to compute at which
characteristic anisotropy scale g this crossover should oc-
cur, and we shall find that this crossover point depends
on the specific scaling law and correspondent critical ex-
ponent under consideration. These predictions are, of
course, subject to direct tests by computer simulations
and/or experiments, which would thus be most desirable
in order to check our results.

For the issues we have in mind, the main quantity of
interest is the pair correlation function (or connectivity)
G(rz,r1), which measures the probability that the sites
r2 and r; are connected by some path irrespective of the
other sites in the lattice. Lines of constant G' hence de-
scribe the average shape of the percolating structure. In
directed percolation r = (x,t) the pair correlation func-
tion has to be causal, i.e., one has to add the restriction
that t, > t; for G to be nonzero.

Percolation problems may be reformulated in terms of
certain field theories. Cardy and Sugar [4] have shown
that directed bond percolation is in the same universal-
ity class as Reggeon field theory, which has been studied
intensively by particle physicists in the 1970s, below five
dimensions. This universality was also confirmed numeri-
cally for d = 2 and d = 3 (see Refs. [5-7]). A correspond-
ing mapping for isotropic site-bond correlation onto a re-
lated field-theoretical model was performed by Benzoni
and Cardy [8], valid for d < 6 dimensions. An extension
of these models to the intermediate case of anisotropic,
but not entirely directed percolation is straightforward,
and we shall use the ensuing field theory for our inves-
tigation of the crossover from self-similar to self-affine
scaling.

The problem of directed percolation has been studied
by various theoretical methods, such as high-temperature
expansion for the calculation of the exponents in d = 2
[5], € expansion [4], and Monte Carlo simulations [9, 10,
7). The main focus of all these investigations was the
determination of the independent critical exponents.

There are many processes in nature which can be de-
scribed in terms of biased percolation. An example is
the reaction of polymerization with the production of a
giant macromolecule (gelation or vulcanization), if it oc-
curs under anisotropic external conditions. If the seed
macromolecule is washed by a flow of solution contain-
ing monomer groups, it is obvious that the probability of
connection along and against the flow is different [11]. In
general, directed percolation can be understood as a pro-
totypical model for the spreading of some influence, such
as transport in a strong external field [12], crack prop-
agation [13], epidemics or forest fires with a bias [14].
One more example is the propagation of excitations in
the system of neurons or neuronlike automatons.

Our paper is organized as follows. In the following
section we start with an outline of the mapping of per-
colation problems onto “dynamical” field theories [15].
We define the specific model under consideration here
and comment on the different upper critical dimensions
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which play a role in the limiting cases of isotropic and
directed percolation, respectively. In Sec. III we shall
then describe an appropriate renormalization procedure
allowing for a detailed analysis of the crossover scenario.
It comprises a generalization of Amit and Goldschmidt’s
procedure designed for bicritical points [16] enabling us
to treat the fixed points with different upper critical di-
mension within a unified renormalization scheme. The
fourth section is devoted to the solution of the renormal-
ization group equation for the two-point vertex function
and the discussion of the resulting flow equations (in-
cluding their scaling behavior) for the coupling parame-
ters in the framework of an explicit one-loop theory. On
this basis, we shall identify the asymptotic critical in-
dices for both isotropic and directed percolation, and an
additional crossover exponent A. Finally, we shall cal-
culate effective critical exponents for the different length
scales and the wave vector dependence of the pair corre-
lation function, which allows us to determine the relevant
crossover scales. In the Appendixes, we list some techni-
cal details concerning the one-loop perturbation theory,
and some properties of those integrals that emerge after
the application of Feynman’s parametrization, and enter
the explicit expressions for the renormalization constants
and flow equations.

II. MAPPING TO A FIELD-THEORETICAL
MODEL

Following the considerations by Cardy and Sugar [4],
and Benzoni and Cardy [8], we argue that our gen-
eral percolation problem can be mapped onto a field-
theoretical model. For the reader’s convenience, a very
brief sketch of the basic ideas entering the derivation of
the probability measure is presented here; more details
may be found in the literature [2, 4, 8]. As stated above,
the central quantity of interest is the pair-correlation
function G%(rz,r;) (we shall henceforth denote unrenor-
malized quantities with a superscript “0”), or probability
that sites ry = (x1,%;) and r2 = (x2,%2) belong to the
same percolation cluster. In a first step, Go(rg,rl) is
represented by a sum of all such graphs defined on the
percolating lattice which are constructed by the following
rules [2, 4, 8] (see Fig. 2).

FIG. 2.
lattice.

Directed bonds placed on a square percolation
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(1) Place oriented bonds on the lattice, in such a fash-
ion that from each site in the diagram it is possible to
reach r, by following the arrows forward, and r; by fol-
lowing the arrows backward. (2) Closed loops of arrows
are not allowed. (3) Insert a factor p for each bond. (4)
In order to avoid multiple countings, insert a factor —i™
for each vertex where n bonds meet.

The second step is a more formal expression for
G°(rz,r1), to be obtained by introducing commuting
“ladder” operators a(r;) and a(r;) at each site r;, and
an operation Tr, with the properties

a? = ia, a? =ia,

(2.1)

(2.2)
J

Denoting by P an operator projecting out the graphs
with closed loops, the diagrammatic rules above can now
all be summarized in the formula

[T [ +pa@a(r))]

(links);i,j

xa(r2)>.

the “transition probability” in Eq. (2.3) may be expo-
nentiated according to

Go(rz,l‘l) = ’I‘I‘(P (J,(l‘l)

(2.3)

Introducing

A= —In(1-p), (2.4)

(2.5)

[I O+paeda@))= [ expa(a(r;)] =exp | Y a(r:)Visa(r;)| ;

(links);i,j (links);,7 i3

in the final expression here, V;; = v(r; — r;) is a matrix which stems from the nearest-neighbor interaction A and
depends on the details of the lattice structure, and v(r) is a short-ranged function. The next step in our derivation is

a Gaussian transformation, i.e., a representation of Eq. (2.3) by a functional integral over auxiliary fields ¢¢ and bo:

G%(rz,r1) = Tr{Pa(rl)/D[qﬁo]/D[(f;o] exp —Z&o(ri)Vi;l¢o(l‘j)

%

X exp (Z [&(ri)d)o(ri) + a(ri)d;g(ri)]) a(rz)}. (2.6)

Now we take the continuum limit, and expand V”_1 with respect to gradients of r; to lowest order, one has

1 0 9?2
U_Izn—c(1—8V1+T1§~7‘25¥E+"‘),

where n. is the coordination number of the lattice. Note that we have explicitly taken account of the fact that our
problem displays an inversion symmetry with respect to x; in the case of isotropic percolation the term o r; vanishes,
and (2.7) is even invariant under transformations ¢ — —t, and hence r — —r, while in the self-affine region the second
“time” derivative becomes irrelevant.

At last, we have to perform the operation Tr in Eq. (2.6); this may be achieved by expanding the exponential with
respect to powers of a(r;) and a(r;). For the detailed calculations, we refer the interested reader to the Appendix 1
of Ref. [8]. The final result for the pair correlation function is a sum over (m + n)-point correlation functions

(2.7)

Elxtrixnt) = 3 O m":: L GO, (xay tai X1, 1) (2.8)
m,n=1
here the GO, (x2,t2; X1,t1) are defined via
GO (X2, b2 X1, t1) = (Po(Xa, t2)™o(X1, 1))
=P [ Digo] [ Dido] doloxet2) "ol 12)" exp [ T 1o, ] (29)
where the probability measure explicitly reads
Tlo0,o] = = [ d®z /dt{ Bo(x,1) [ro _ve —lfg— 2 at] Bo(x, 1)
+20 [Gax, 700, 1) = o(x, )0(x, 7] . (210)
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When writing down Eq. (2.10), we have omitted non-
linear terms of higher than third order with respect to
the fields ¢ and ¢ for universality (we are interested
in the scaling behavior near the percolation threshold
pc) and renormalizability reasons; the neglected contri-
butions constitute irrelevant perturbations in the sense
of the renormalization group. Furthermore the expan-
sion parameters of Eq. (2.7) have been renamed for con-
venience. For the percolation threshold itself one finds

pe=1—e1/m (2.11)
and for p — p. one has
To X P — Pe. (2.12)

In Eq. (2.9), the operator P now assures “causality,”
and projects out “acausal” diagrams, e.g., closed Hartree
loops containing the “response” propagator (compare
Ref. [15]).

On the basis of Egs. (2.8)—(2.10) one is now in a
position to construct a perturbation expansion for the
pair correlation function G°(ra,r;). In this paper, how-
ever, we shall confine ourselves to the study of the
renormalization-group equation for the two-point vertex

function

1
r qQw) = ———0, (2.13)
11( ) th)l(_q’ —(U)

which already displays the correct scaling behavior and
will permit the identification of the relevant critical expo-
nents. Here we have defined the (d = D + 1)-dimensional
Fourier transformation according to

do(x,t) = / / Bo(q, w)es@x—wD), (2.14)
qJw

where we have introduced the convenient abbreviation

LL...zﬁdeq/dw....

For the renormalization of the nonlinear coupling ug, we
shall also have to consider the two three-point vertex
functions

(2.15)

_ Gh(-3-%5-%-%qw) (2.16)
= . (2
G(l)l(q7w)G(1)1(%’ 5)?

_ _Gh(awi-%-%-1,-3)
G312, )% (5,37

(2.17)

The practical advantage of using these vertex functions
instead of the correlation functions themselves is their

correspondence to the one-particle irreducible diagrams
within the graphical representation in terms of Feyn-
man diagrams (see, e.g., Ref. [17]). (We remark that
in the definitions of the vertex functions (2.13), (2.16),
and (2.17), the Dirac § functions stemming from trans-
lational symmetry in x and ¢ have been split off.)

Returning to the “dynamical” functional [15] (2.10), it
is easily seen that setting the parameter go to zero leads
to the field-theoretical model of Benzoni and Cardy for
the special case of isotropic bond percolationind = D+1
dimensions [8]. Of course, ¢y may then be assumed to
take the value 1. On the other hand, in the limit go — co
and ¢y — oo such that go/co remains finite, one obtains
Cardy and Sugar’s Reggeon field theory for the problem
of directed percolation with t denoting the preferred di-
rection [4]. Any finite value of go hence corresponds to
a biased percolation problem, with gy characterizing the
strength of the inherent anisotropy.

We now proceed with a simple dimensional analysis to
determine the upper critical dimensions of our model in
the different limiting cases. If we define

[z] =[] =AY, (2.18)
where A is a cutoff wave vector which defines the mi-
croscopic length scale of the problem, then we find for

the primitive dimension of the stochastic fields (using
[J] =A%)

[Bo(x,t)] = [Po(x,t)] = AC~D/2, (2.19)
Hence the coupling parameters acquire the followin,

g
“naive” dimensions:

[ro] = A? s [eo] = A° » [g0] = A ’

and [ug] = A@~9)/2, (2.20)

The upper critical dimension may be identified by not-
ing that the relevant nonlinear coupling has zero primi-
tive dimension at d = d.. In the isotropic case (go = 0),
the expansion parameter of the perturbation series turns
out to be uZcy, and hence the upper critical dimension
for isotropic percolation is found to be d. = 6. In the
extremely anisotropic limit (go — oo and go/co = const)
on the other hand, a simple rescaling of the fields shows
that now the effective coupling is uZcy/go, and using Eq.
(2.20) demonstrates that d? = 5 for directed percola-
tion. Hence accompanying the crossover from self-similar
to self-affine scaling, there is a change of the upper crit-
ical dimension. At first sight, this renders this crossover
problem rather cumbersome, at least if one wants to use
an (e = d. — d) expansion near d.. We shall see, how-
ever, that a procedure similar to Amit and Goldschmidt’s
treatment of bicritical points [16] will enable us to give a
consistent mathematical description of this crossover. Of
course, we shall have to refrain from any € expansion. We
would like to remark that different modifications of this
(somewhat misleadingly) so-called “generalized minimal
subtraction scheme” have been successfully employed by
Lawrie [18] and the present authors [19-21] for further
interesting crossover scenarios.
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III. PERTURBATION THEORY
AND RENORMALIZATION

On the basis of Eq. (2.10), one may derive the per-
turbation series with respect to ug following the common
procedure (see, e.g., Ref. [17]). From the bilinear part
of the “dynamic” functional J[¢o, ¢~>0], one easily derives
the free propagator

1
ro + ¢ + w?/ck — 2iwgo/co’

G(1)1 (0)(‘1,‘-") = (3.1)
and the vertices may be read off from the anharmonic
part of (2.10). In Fig. 3, we depict these elements for
constructing the Feynman graphs of our field-theoretical
representation of the biased percolation problem.

For r¢ — 0, the ensuing perturbation theory is of
course infrared divergent, leading to nontrivial critical
exponents. These anomalous dimensions are derived via
studying the ultraviolet singularities of the field theory,
which appear at the upper critical dimension d., when
the momentum cutoff A is pushed to infinity (see, e.g.,
Ref. [17]). Finite values are then assigned to these UV-
divergent integrals through the application of a regular-
ization prescription. We shall choose the dimensional
regularization scheme as introduced by t’'Hooft and Velt-
man [22]; here the (A — o0) singularities appear as poles
x 1/(d. — d).

The ultraviolet divergences may then be collected in
renormalization constants and absorbed into the defini-
tion of multiplicatively renormalized quantities. Thus we
define the renormalized fields

¢=2"%, =24, (3.2)
and the renormalized parameters

r = Z;lZ,.(ro - ’I‘gc)p,_z, (3.3)

=242k, (3.4)

9 =221 Z,g0p7 Y, (3.5)

u = ZJB/zZuuoB;/zp,(d'e)/z. (3.6)

Note that both fields are renormalized with the same Z
factor, implying that I';; = Z(;ll"fl’l, I = Z;3/2F?2,

and Ty, = Z;*/°TY,.

(@ ————

(©)

FIG. 3. Propagator and vertices of the field-theoretical
representation used in the text.

In (3.3) we have taken into account the fact that the
fluctuations will also shift the percolation threshold. Fur-
thermore we have rendered the renormalized quantities
dimensionless by introducing the explicit arbitrary length
scale 1/p, and have finally included the geometric factor

I'(4—d/2)
5= " amy

in the definition of the renormalized coupling (3.6).

In the case of crossover phenomena, however, there is
(at least) one additional relevant length scale besides the
correlation length, given by an anisotropy or “mass” pa-
rameter describing the variation from one scaling region
to the other. This implies the technical difficulty that
both the UV and IR singularities will differ in the two
distinct scaling regimes. In the “traditional” approach to
crossover problems, one would compute the critical ex-
ponents in the vicinity of one of the stable fixed points;
all the crossover features would then be contained in the
accompanying scaling function as corrections to this scal-
ing behavior. However, in general a calculation to high
order in the perturbation expansion would be required
in order to achieve a satisfactory description of the en-
tire crossover region. Of course, using an (¢ = d. — d)
expansion with respect to either of the fixed points ren-
ders the other one completely inaccessible, if their upper
critical dimensions do not coincide. Therefore Amit and
Goldschmidt’s idea to incorporate the crossover features
already in the exponent functions has proven much more
successful than treating the problem on the basis of scal-
ing functions. The essential prescription one has to bear
in mind is that the renormalization constants are not
solely functions of the anharmonic coupling, but neces-
sarily also of the additional “mass” or anisotropy param-
eter describing the interplay between the two different
scaling regimes [16].

In our case this second length scale is related to the
anisotropy parameter go. For a consistent treatment of
the entire crossover region, one thus has to assure that
the UV singularities are absorbed into the Z factors for
any arbitrary value of go, including go — oo. This
is not a trivial prescription, as usually the 1/(d. — d)
poles will be altered in the different scaling regimes.
For the situation that we have in mind, even the value
of the upper critical dimension is bound to change as
the crossover takes place, in contrast to previously stud-
ied cases [18-21]. However, we shall demonstrate that
with the above stated so-called “generalized subtraction
scheme” this change in the upper critical dimension may
be incorporated into the usual formalism without any
drastic changes, if one refrains from any € expansion
about d.. The perturbation series is then an expan-
sion with respect to the effective coupling v to be in-
troduced later, which is not an a priori small parameter,
and the perturbation expansion is uncontrolled in this
sense [23]. If higher orders of the perturbation expansion
were known, one could substantially refine the theory by
a Borel resummation procedure. For a more detailed dis-
cussion of the question in which cases one may dispense
with a (d. — d) expansion, we refer to work of Schloms
and Dohm [24].

(3.7)
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Another (minor) price to be paid is that for the flow
equations and related quantities only numerical solutions
are accessible, and merely the limiting cases of go = 0
and go — oo, respectively, allow for an analytical in-
vestigation. We remark that the somewhat misleading
term “generalized subtraction scheme” stems from the
fact that in the framework of an € expansion this cor-
responds to adding logarithms of go, which are finite in
the limit ¢ — 0, to the Z factors; see the original work
by Amit and Goldschmidt [16]. It should be emphasized
that the procedure described here is obviously applicable
to a great variety of crossover problems (for some exam-
ples see Sec. V).

After these general statements, let us return to our
explicit calculations. In Fig. 4 we have depicted
the one-loop diagrams for I'Y;, I'Y,, and I'J,. From
042T'11(q,0) |q=0 one infers directly the field renormal-
ization Zy, while Z,, Z., and Z; can be calculated
by investigation of I';;(0,0), 8,2I'11(0,w) |w=0, and
8,T11(0,w) |w=0, respectively. Finally Z, is to be ob-
tained from one of the renormalized three-point vertex
functions at vanishing external momenta and frequencies
(see Appendix A). All these vertex functions are investi-
gated at finite “mass” ¢ = u?, in order to avoid compli-
cations stemming from additional infrared singularities.
Thus the renormalization scale u comes into play.

The explicit one-loop results for the renormalization
factors—being functions of the anisotropy scale go—read

- [Ifs(90/m) = Is(90/m)] s (3:8)
-—_d)jfi’5(go/#), (3.9)
" [14(00/ ) — Ty (ao/0)]

d—8
+—8——-— [ZIgs(go/ﬂ) - Ig;;(go/#)] ’
(3.10)
4(6 — d)
udcoBaud—®
6—d

Zg=1- (Ifs(g0/p) — Is(go/w)],  (3.11)

Z,=1-

It (90/ 1), (3.12)

@)

EL<
EL<

(b) m
@ A
) A

FIG. 4. One-loop diagrams for (a),(b) I'?;, (c),(d) 'Y,
and (e),(f) I3;.

where we have introduced the abbreviations I2_ (go/u)
for a certain class of Feynman parameter integrals which
appear in the course of the calculations (compare Ap-
pendix B).

At this point, we may study the behavior of the Z fac-
tors in the two limiting cases of isotropic and directed
percolation, respectively. Let us investigate Z,,, for ex-
ample; for go = 0 we find with Eq. (B3)

2u2coBapd—®
6—d ’

while in the opposite case gg — oo the pole at d = 6 is
cancelled and replaced by another one at d = 5

B u3coBaB(1/2, (7 — d)/2)pd~®
go(5 - d)

9o=0: Zy=1 (3.13)

go — 00 : Zy=1

(3.14)

[here Eq. (B4) has been used]. Hence our prescription
provides the relevant effective coupling constants and the
correct pole structure in both limits, and interpolates
smoothly in between.

Finally the fluctuation-induced shift of the percolation
threshold results as the solution of the implicit equation

’ugCOBd 2/(6=d)

mﬁiz(go/\/m)

Toc = (3.15)
Note that 7o, is a nonanalytical function of ug for both
limits go = 0 and go — oo (see, e.g., Ref. [24]).

IV. RENORMALIZATION-GROUP AND FLOW
EQUATIONS

A. Scaling behavior and critical exponents

The renormalization-group equation serves to connect
the asymptotic theory, where the infrared singularities
manifest themselves, with a region in parameter space,
where the coupling u is finite (but not necessarily small)
and ordinary “naive” perturbation expansion becomes
applicable. It explicitly takes advantage of the scale in-
variance of the system near a critical point (i.e., the per-
colation threshold in our case). More precisely, we ob-
serve that the bare two-point vertex function is of course
independent of the arbitrary renormalization scale u:

d
kL I1(ro, €0, 9o, w0, 9, w) = 0. (4.1)
Hlo

Introducing Wilson’s flow functions

a3

» =Hg| n2 (4.2)
a r 4

r=p—| In—=-2—-(4+p—| InZ,, (4.3

¢ #3# o To—Toc o Maﬂ 0 (43)
o c 1 1 8

.= — ==(p— —p=—| InZ,, 4.4

¢ ”au oln co 2<¢ 2" O, n (4.4)
a g o

Gg=p7—| Imn==-1-C(s+(+p—| InZ,, (4.5

9 a# o do L4 “6[1. 0 9 ( )
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u d—6

1s]
1_______
0n0 2 C¢+;LE

ln Zy, (4.6)

we may transform Eq. (4.1) into a partial differential
equation for the renormalized vertex function

8 8 8 9 8

xrll(;uv rcg,u, q,w) = 0. (47)

The symbol |o indicates that all the derivatives are to be
taken at fixed bare parameters g, go, and ug. One should
note that, as a consequence of the generalized renormal-
ization scheme, all the flow functions ¢ are functions of
u, ¢, and g.

The renormalization-group equation (4.7) is now read-
ily solved with the method of characteristics. The char-
acteristics a(£) of Eq. (4.7) define the running parame-
ters and coupling constants into which these transform
when g — p(€) = pl. They are given by the solutions to
first-order differential equations (a = r,¢, g, u)

24 — ¢ (0yate),

with the initial conditions 7(1) =7, ¢(1) = ¢, g(1) = g,
and u(1) = u, namely

(4.8)

a(f) = aeli ¢a(¢)at' /¢ (4.9)

Defining the dimensionless vertex function f‘n according
to

p'oep’ cpl
(4.10)

2
- q 9w w
Fll(,u" T C g, U, q,UJ) = )u'zrll (7‘7 v, )

the solution of (4.7) reads

Fll(ﬂ’ara Cvgauvqaw)
_ ;["Zzeff Co())de' /8
9w W2
><I‘11 (’I"( ) v(() p,f C(l)uz C(Z)z 2[2 . (411)

Here we have introduced an effective anharmonic cou-
pling

v = u’cl(g), (4.12)

which acquires finite values in both limits, g — 0 and
g — 00. Defining the corresponding G function

Bv = (4.13)

p=—1\ v
ou |,
the flow of the running coupling v(¢) is given by the dif-

ferential equation

20 _ g,00)

In the flow equations above, the parameter £ may be
considered as describing the effect of a scaling transfor-
mation upon the system. Obviously, the theory becomes
scale invariant when a fixed-point v*, to be obtained as
a zero of the 3 function,

Bu(v™) =0,

is approached. The properties of I'y; in the vicinity of
the fixed point will yield the correct asymptotic behavior,
if the latter is infrared stable, i.e., if Bﬂv/avlvz .>0is
satisfied, for in this case the flow of the running coupling
will reach v* for £ — 0.

We now turn to the investigation of (4.11) near a fixed
point v*; introducing the fixed-point values of the ¢ func-
tions (; = (,(v = v*), also called the anomalous dimen-
sions of the parameters a, we find that I'y; becomes a
generalized homogeneous function

(4.14)

(4.15)

* A - q
Fll (/J" rnecg,u,q, (.U) = ”2[2+C¢I‘11 (Te<r ) U*a Y

Using the matching condition £ = g/pu, one arrives at the following general self-affine scaling form:

r *

2-7L T
Fll(uvrvcagauaqaw)“q I‘11 ((q/“)l/u’v al’

where we have defined four independent critical exponents according to

1
o z=1+(—-¢;, and

_L:_<;$7 vy = —

w? 4.16
wl’ CIMHC;—C; ’ c2p2020+¢) |- (4.16)
2
gw w
, , (4.17)
cp(q/p)? czuz(Q/u)zz“‘A’)
A= (. (4.18)

1. and v, correspond to the two independent indices familiar from the theory of static critical phenomena. The

exponent z was introduced in analogy to a dynamical critical exponent, and is in our case related to the anisotropic

scaling behavior [25]. Finally, A is a crossover exponent, 0 < A < 1, describing the transition from isotropic to

directed percolation. It stems from the fact that there appear two different scaling variables for the “frequency” w in

Eq. (4.17). In the asymptotic limit of directed percolation, g — co (accompanied by ¢ — oo while g/c remains finite),

the second scaling variable vanishes, and the scahng behavior is described by the three exponents 7, v, , and z.
Similarly, with the choice ¢ = (gw/cu)l/(l"‘c —¢) Eq. (4.16) reads
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Fll(u, r,¢g,u,q, UJ) x w2 fll (
where [25]
2-m=(2-1n1)/z,

and v =zv,.

Moreover, £ = r~1/¢ leads to

~ w
Fll(ll'a ncg,u,q, w) X T‘lel (1, v*y %T—VJ' 9 g—r—yll 9

with another (“static”) exponent +, related to v, and y
via
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2

T - q w

1 1
T W T ) (419)
(4.20)
Lz_ —2V||(1—A) 4.21
o =l ; (4.21)
f
(o= =6 130 30lisl) (4.29)
2 16 ' 16 1%(g)

’7=VL(2—T]L) =V||(2—‘l’]||). (4.22)

For the sake of completeness, we finally state the scaling
relations (3]

28+v=2—-a=Dv, +vy =286 —-~=p0(1+9)

(4.23)

for exponents a, 3, and §, to be defined in just the same
way as for ordinary continuous phase transitions [17].

In the special case of isotropic percolation (go = 0), the

scaling relations become considerably simpler. For exam-

ple, instead of Eq. (4.21) one finds self-similar behavior
according to

Fll(l"', r,C, Oa u,q, UJ)

I P wZ —2v
xr'T';1| 1,v%, =r7%,0, -7 R (4.24)
© cp
with two independent critical exponents n = —(g and v =

—1/¢}. The scaling relations reduce to v = v(2 — ) and
26+ v =2 — a = dv. On leaving the self-similar scaling
region, a second scaling variable comes into play, leading
to the appearance of the crossover exponent A defined
above [Egs. (4.17), (4.19), and (4.21)], and eventually to
anisotropic scaling.

B. One-loop results

To one-loop order, Wilson’s functions as derived from
Egs. (4.2) — (4.6) and (3.8) - (3.12) read

o=3 -l 2
SRS A ] o
- 1eb < B
=1 -]

SR -RGl e

[here Egs. (B5) and (B6) of Appendix B have been ap-
plied].

In the following two special situations, we may explic-
itly evaluate these general relations: In the case g — 0,
we find v — 2uZ?¢ [using (B3)]; thus

,@v=v<d—6+£v),

with the stable fixed point of isotropic percolation (for
d < 6)

g—0: (4.30)

ot = 5;-(6 —d). (4.31)

The fixed-point values for the { functions are (} = v*/12,
¢ = —2+5v*/12,(} = 0,and {; = —14v*/12. Hence we
find the following isotropic critical exponents [n = 7, (v{)
and v = v, (v])]:

6—d

_ 5(6 — d)
1 _
71 and v™ =2 7

In Eq. (4.17), the term linear in w vanishes for g — 0,
and inserting ¢} = 0 yields

2(1-A)=1,

n= (4.32)

(4.33)

which is equivalent to isotropic scaling in d = D + 1
dimensions; compare (4.24). The crossover exponent

1-(6—d)/21

A== 6-a/m

(4.34)
provides the power law according to which the isotropic
scaling region is left in favor of the anisotropic behavior
to be discussed below. For d > 6, the isotropic Gaussian
fixed point

vE =0 (4.35)

is stable, with the corresponding mean-field exponents

1 1
2’ z=2, and A:E.

The limit of directed percolation is characterized by a
diverging anisotropy scale g — oo. Using Eq. (B4), the
coupling parameter becomes v — u?cB(1/2,(7—4d)/2)/g
(note the additional factor 1/g), and the 3 function now
reads

nL = 0, v, = (4.36)
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g— oo : (4.37)

ﬁv=v(d—5+gv)

Therefore, for d > 5 the directed Gaussian fixed point

vip =0 (4.38)
becomes stable, which again leads to the exponents of
Eq. (4.36).

On the other hand, for dimensions d < 5 the asymp-
totic behavior is governed by the nontrivial anisotropic
scaling fixed point

. 2

up = 3(5 d).
Note that the upper critical dimension has changed to
dP = 5, in contrast to the isotropic case, where d =
6; physically, this reduction is due to the suppression
of fluctuations by the anisotropy, and may be formally
traced back to the appearance of the factor 1/g in the
expression for the asymptotic coupling. Inserting (4.39)
into the results for the ¢ functions, (; = v*/8, ( =
—2+3v"/8,(; =v"/8,and (; = —1+v"/4, we find the
following critical indices:

5—d

5-d
Tt NPT T
12 0 g 12

5-d

and zA=1-— ——,
6

which characterize the self-affine scaling of the percola-
tion clusters with preferred “time” direction [4]. The
anisotropy is reflected in the exponent z, and A now de-
scribes the crossover from isotropic to directed percola-
tion near the anisotropic percolation fixed point vf,. We
have collected the four fixed points and the correspond-
ing values for the independent critical exponents in Table

I

(4.39)

nL =

(4.40)

Thus we have demonstrated that both the self-similar
and the self-affine scaling behavior are within the scope
of the present theory, at least for dimensions d < 5; for
5 < d < 6 the model is not renormalizable in the directed
limit, and the crossover description based on extracting
the UV poles may be questionable. However, in this case
the asymptotics of the model are simply described by
the mean-field exponents corresponding to the Gaussian
fixed point vgp, with logarithmic corrections for d = 5,
and at least the qualitative features of the crossover to

TABLE L.

this Gaussian theory are well reproduced by our formal-
ism (see also Refs. [19] and [21]). At any rate, this
discussion again emphasizes the fact that no expansion
with respect to a fized upper critical dimension can be
applied consistently [from our procedure a kind of “ef-
fective upper critical dimension” d.(g), varying with the
anisotropy scale g, might be extracted].

For the physically interesting situation d < 5, note
that a smooth interpolation between the two asymptotic
cases is obtained at every stage of the present theory,
i.e., for the renormalization constants, the ¢ and § func-
tions, the fixed-point values, and the scaling functions.
We shall now proceed to study the entire crossover region
between these asymptotic regimes, which can be readily
done by solving the coupled set of flow equations (4.8)
with (4.25)-(4.29) numerically.

We start with the analysis of the flow diagram for the
effective coupling “constants” v(£) and §(¢) = g(¢)/[1 +
g(£)] (the latter assumes values in the interval [0, 1] only,
which is more convenient than the range [0,c0] of the
original anisotropy parameter g), shown in Fig. 5. The
four fixed points, as summarized in Table I, namely those
for isotropic percolation (I), directed percolation (D),
Gaussian isotropic (GI), and Gaussian directed (GD)
percolation, respectively, determine the topology of the
(v,g) flow diagram (where we have chosen d = 3 and
i = 1 for the renormalization scale.) The only infrared-
stable fixed point is the one for directed percolation,
(v*,§*) = (%(5 — d),1). All other fixed points are un-
stable, but as can be inferred from Fig. 5, they are
more or less attractive depending on the initial value
for the coupling constants. The flow diagram is divided
into two regions by a separatrix, which constitutes the
renormalization-group trajectory from the fixed point vf
to vfy, describing the universal crossover from self-similar
to self-affine scaling. For initial values v < vy, there are
besides the stable fixed point for directed percolation
three unstable fixed points (I), (GI), and (GD). Start-
ing from the Gaussian isotropic fixed point (GI), the
renormalization-group trajectories traverse regions close
to the fixed points (I) or (GD), depending on the ini-
tial values §(1) and v(1), before they finally reach the
infrared-stable fixed point for directed percolation (D).
The competition between all these fixed points will also
become apparent in the flow of the effective exponents
(e.g., for the pair correlation function). For initial values
v > v there is only one relevant unstable fixed point (I).

Fixed point values for the effective coupling “constants” v(£) and §(£) at the isotropic

(I), Gaussian isotropic (GI), directed (D), and Gaussian directed (GD) fixed points and the cor-
responding values of the four independent critical exponents. The other critical indices may be
inferred from scaling relations [see Eqs. (4.20), (4.22), and (4.23)].

Fixed point v* g° nL vt z A
GI 0 0 0 2 2 1
ap _6-d 5(6 — d) _6-4d 1-(6-d)/21
! 7(6-d) 0 21 21 29 2 (6—d)/21
GD 0 1 0 2 2 1
2 5-d _5-d _5-d 1-(5-d)/6
D 3(6-4d) ! 12 4 2- 13 2-(5-d)/12
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FIG. 5. Renormalization-group trajectories in the (v, g)

parameter space for the crossover from isotropic to directed
percolation (to one-loop order) in d = D + 1 = 3 dimensions.
In order to map the range [0, 00] of g onto the interval [0, 1],
we use the variable § = g/(1 + g) instead of the anisotropy
parameter g.
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FIG. 6. Flow dependence of {4(£) (a) and ¢-(£) (b), where
we have chosen a fixed initial value v(1) = v{ for the three-
point coupling and a series of initial values for the anisotropy
parameter [g(1) = 1072, 1073, and 107%).
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As a result of the flow dependence of the coupling con-
stants also the { functions, whose fixed-point values are
related to the critical exponents, display crossover behav-
ior. In Fig. 6 we exemplify this flow dependence for the
¢ functions (y(£) and ((£), respectively, where we have
chosen a fixed initial value v(1) = vi for the three-point
coupling, and a series of initial values for the anisotropy
parameter [g(1) = 1072, 10~3, and 107%].

The most important conclusion to be drawn from the
crossover behavior of the ¢ functions is that the crossover
for the anomalous dimension of the stochastic fields (,
starts at values of the flow parameter which are approx-
imately one order of magnitude smaller than the corre-
sponding values for (,. This should then also be visible
as different crossover locations for the distinct effective
exponents of the connectivity G.

C. Effective exponents for the pair correlation
function

In this paragraph we consider the effects of the
crossover on the most interesting physical quantity,
namely the pair correlation function. As discussed in
Sec. II, the scaling behavior of the connectivity is iden-
tical to that of the two-point function Gii(q,w) =
I'11(—q, —w)~!, which has been studied in the preced-
ing subsection.

As a first approximation, one can use the zero-loop
result for the scaling function and find

2

Iu(r,qw) = #zfzeff Co(L)at' /e [.,.(e) + Mzgz

w? . wg(f)
e ¥ ()

) (4.41)

It is quite straightforward to calculate corrections to
this zero-loop result for the scaling function in a pertur-
bation expansion with respect to the effective coupling
constant v. However, there are serious technical prob-
lems associated with the nonanalytical dependence of the
shift of the percolation threshold p. on ug [Eq. (3.15)].
This is, however, not a particular difficulty of our the-
oretical approach, but a fundamental problem for any
field-theoretical calculation at fixed dimension below d..
Schloms and Dohm [24] have shown that for a ¢* theory
the nonvanishing mass shift can be incorporated in the
minimal subtraction approach directly in three dimen-
sions without recourse to the standard (¢ = 4 — d) ex-
pansion. But, even for this “standard model” of critical
phenomena there does not exist a straightforward per-
turbation method at finite external momenta which al-
lows for a consistent treatment of the nonanalytical mass
shift at fixed dimension. Hence, at the present stage of
the theory, we can treat the ¢ functions to arbitrary loop
order, but have to restrict ourselves to a mean-field (zero-
loop) treatment for the scaling functions. Nevertheless,
one expects that the results for the effective exponents
obtained within this “renormalized mean-field theory” to
provide a reasonably good approximation. This expecta-
tion is based on the experience that amplitude (or scal-
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ing) functions are usually smooth and well behaved, and
enter the results less sensitively than the exponential ¢
functions. In fact, our approach was especially designed
to incorporate the complete crossover behavior into the
exponential functions {,. This has to be contrasted with
the usual scheme, where the crossover has to be inferred
from high-order calculations of the amplitude functions
(and usually does not go far beyond the determination
of corrections to scaling).

The most convenient way to analyze the crossover be-
havior of the pair correlation function is in terms of effec-
tive critical exponents. We consider first the case r = 0
and q = 0 and choose to define the effective critical ex-
ponent 7 . by [compare (4.19)]

_ dhl \/l I‘n(0,0,w) |2

Using the matching condition
w? wg(®) |*
21 =1 4.43
wea@ T | T (4.43)
the effective exponent is found to be
din¢
2= mes(l) = 2+ Co(O] 77— (4.44)

where the factor dInf/dIlnw has to be determined from
(4.43). The effective exponent 2—7) ¢ (£) is shown in Fig.
7 as a function of the flow parameter £, where for the ini-
tial value v(1) = vf, and a series of initial values for the
anisotropy parameter, g(1) = 10~* with k = 2, 3,4, have
been chosen. Upon using the matching condition (4.43)
the flow parameter £ can be related to the longitudinal
length scale (“frequency”). If the effective exponent is
plotted versus the running anisotropy parameter g(£), all
the curves for different initial values g(1) collapse onto
one master curve. The corresponding plot is shown in
Fig. 8. Since g(£) x £% near a fixed point, the scale
transformation (in order to reduce all curves to one mas-
ter curve) depends on how close the flow is to one of the

1.0 . . L
-16.0 -11.0 -6.0 -1.0

1

FIG. 7. Effective exponent 2—1) g () for the connectivity
as a function of the flow parameter £ for fixed initial values
v(1) = v{ and a series of initial values for the anisotropy
parameter [g(1) = 1072, 1073, and 107*].
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FIG. 8. Effective exponent 7 & ({) for the pair correlation

function as a function of the running anisotropy parameter
g(£) for a fixed initial value of the coupling constant v(1) = vy.

four different fixed points. Note that because (g is not a
constant, no simple scaling relation can be deduced for
the location of the crossover by simply investigating any
one of the two asymptotic regimes.

Next, in the case r = 0 and w = 0 one can define an
effective exponent 7, . by [see Eq. (4.17)]

_dInT1;(0,q,0)

dine (4.45)

2 - n_Leﬂ'(q)

With the matching condition (g/u€)? = 1 this reduces to

2 -1 er(f) =2+ Co(d). (4.46)

Finally, we consider the case w = 0 and q = 0. Upon
defining an effective exponent [compare (4.21)]

_ dInT'4(r,0,0)

Yerr(r) = dlnr (4.47)
and choosing the matching condition r(£) = 1 we find
_ dinf 2+ Ge(4).
et (£) = [2 + C¢(€)] dlnr 0] ; (4.48)

remarkably, Eq. (4.48) is valid throughout the entire
crossover region, and not just near one of the fixed points,
where it becomes identical to the scaling relation (4.22).

The flows of the above effective exponents, and that of
the “effective” dynamic exponent

zeg(£) = 1+ (c() — Go(9),

are shown in Figs. 8-11 versus the scaling variable
In[g(£)], with p = 1, and the initial value v(1) = v{, such
that the universal crossover starting from the isotropic
scaling region is described. The most important conclu-
sion to be drawn from these results is that the character-
istic anisotropy scales g(£cross), Where the crossover oc-
curs for the effective exponents defined above, are differ-
ent. The effective exponent 7)) .¢ starts to cross over from
the isotropic to the directed fixed point value already at
In g(£eross) = —0.8, whereas the effective exponent ~eg
shows this crossover at In g(£cross) = —0.1, and the “dy-

(4.49)
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FIG. 9. Effective exponent 1y s () for the pair correla-
tion function as a function of the running anisotropy param-
eter g(£) for a fixed initial value of the coupling constant
v(1) = vy.

namical” exponent z.s, as well as 7, g, at an even larger
value In g(€cross) = 0.8. Note that the remarkable change
of 7jeg is already apparent at mean-field level, where
it acquires the values 0 and 1 in the isotropic and di-
rected limit, respectively. However, a description of the
crossovers for 77 eff, Yeff, and zeg requires the ¢ functions
as least on the one-loop level, as has been achieved here.

We remark that a precise calculation of these crossover
features has not been possible up to this present work.
Of course, the exponents for the limits of both isotropic
and directed percolation have been determined to a much
higher accuracy than is provided in our one-loop approx-
imation [2-10]. In fact, the relative errors of our one-loop
results, as compared to the values given in Table III of
Ref. [3], are approximately 0.03, 0.09, and 0.21 for the
exponent «y of directed percolation in d = 4, 3, and 2 di-
mensions, respectively, and for v, one finds correspond-
ingly 0.10 and 0.27 for the three- and two-dimensional
cases. In the isotropic limit at two dimensions, the rel-
ative errors are 0.21 and 0.27 for v and v, respectively.

1.70 T T T T T T T

1.60
=
1.50
1.40 1 1 1 1 1 1 I
40 -30 -20 -1.0 0.0 1.0 2.0 3.0 4.0
In[g(D)]
FIG. 10. Effective exponent vg(£) for the connectivity as

a function of the running anisotropy parameter g(¢£) for a fixed
initial value of the coupling constant v(1) = v}.
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40 -30 -20 -1.0 0.0 1.0 20 3.0 4.0
In[g(1)]
FIG. 11. Effective exponent zerr(£), describing the

anisotropy, as a function of the running anisotropy parameter
g(£) for a fixed initial value of the coupling constant v(1) = v}.

(We remark that the numerical values of our one-loop
results are even slightly better than those of an addi-
tional € expansion; yet they also improve as the upper
critical dimension is approached.) However, our aim was
rather to calculate the detailed crossover properties, and
we believe that the characteristic crossover scales g(£cross)
should not be affected too severely by, e.g., higher orders
of perturbation theory. Certainly, these results, i.e., the
approximations used in this paper, are subject to tests by
both computer simulations and experiment. Of course,
it would be very interesting to compare our predictions
concerning the crossover scales of the different effective
exponents with the outcome of such numerical simula-
tions and/or physical experimental setups.

Therefore we add some remarks on the interpretation
of our results, and on the number of free parameters of
the theory. One of the advantages of studying the effec-
tive exponents is the fact that they do not depend on
nonuniversal amplitudes, i.e., on the initial values (1),
¢(1) (which can be set to 1, if one starts from the isotropic
scaling region), and the scale u. For convenience, we have
plotted our results versus the scaling variable In[g(€)] in
Figs. 8-11, and have thus also eliminated the dependence
on the formal anisotropy parameter. However, in simu-
lations or experiments g(1) = g is a fixed quantity, al-
though its correspondence to a physical anisotropy mea-
sure may be rather indirect. In any case, if merely the
universal crossover features are to be investigated, the
initial value of the effective coupling should be chosen
as v(1) = vf, in order to resemble the self-similar scal-
ing behavior, and then g(1) is the only free parameter of
the theory. In order to compare directly with our figures,
one then has to solve the flow equations (4.8), (4.14) with
Egs. (4.25)~ (4.29), and apply the relevant matching con-
dition, which is straightforward [unfortunately, the scal-
ing behavior with respect to g(1) is complex and cannot
be described by a pure power law). But once g(1) has
been determined for one of the effective exponents, it
must necessarily also yield the crossover point for any of
the others. Obviously, a quantitative study of the effec-
tive indices 7)) ¢g(w) and 7eg(r) is most promising, while
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FIG. 12. Contour plots for I'1;(0,q,w), as inferred from
Egs. (4.50) and (4.51), with values of £ = 107*, 1073, and
1072, respectively.

a detailed analysis of 7 e (q) and zeg(£) is probably dif-
ficult, because of their comparatively small changes on
approaching the self-affine regime.

Possibly clearer on first sight, however somewhat less
distinct concerning quantitative features, is a discussion
of the crossover from self-similar to self-affine scaling on
the basis of contour plots, e.g., for I'11(0,q,w). Applying
the matching condition

q? w? . wg(f)

222 T e T ()

valid at the percolation threshold p = p., Eq. (4.41) sim-
ply becomes

=1, (4.50)

[11(0,q,w) = plf2eli ColHdl' /¢ (4.51)

which is a monotonic function of £ (the exponential is
approximately given by £77+<ff (©); see Fig. 9). There-
fore, contours of constant I'y; are identical to contours
of constant flow parameter £, which in turn can be easily
inferred from Eq. (4.50). In Fig. 12, we depict typical
examples of such contour plots, with values of £ = 107*,
1073, and 1072, respectively, from which the crossover
from isotropic to anisotropic scaling becomes apparent.

V. SUMMARY AND CONCLUSION

In this paper we have investigated the crossover from
isotropic to directed percolation taking advantage of a
mapping onto a field-theoretical representation of the
connectivity [4, 8]. From a conceptual point of view, the
main result of the present paper is the demonstration
that an extended minimal subtraction scheme is capa-
ble of dealing with crossover problems associated with a
change in the upper critical dimension d. in the frame-
work of renormalization-group theory. We have exempli-
fied the method for a long standing problem in perco-

lation theory. But we believe that this approach can be
applied to a wide variety of interesting physical problems.
Among those of most current interest are the crossover
between bulk and surface physics [26], between mean-
field and critical behavior [21], crossover from propagat-
ing to overdamped soft modes in critical dynamics, e.g.,
near structural phase transitions, and others.

Since our primary goal was to present the formalism,
we have restricted ourselves to a one-loop approxima-
tion. We have identified the crossover exponent A and
calculated effective exponents for different length scales
and the pair correlation function. Higher loop orders for
the exponential ({) functions are in principle accessible
within our theoretical framework. However, the calcula-
tion of the wave vector and frequency dependence of the
amplitude functions and the incorporation of the non-
analytical mass shift remains an open problem for a field
theoretical calculation at fixed dimension [24].

It would also be interesting to investigate the crossover
from isotropic to directed percolation by numerical simu-
lations or physical experiments, and compare them with
the theoretical results of our paper. Even though the
values of the critical exponents in the two asymptotic
regimes are not accurate (one-loop results), we expect
the crossover behavior of the effective exponents to be
qualitatively correct. Especially the predictions concern-
ing the different loci of the crossover for the “static” and
“dynamic” quantities could be tested by numerical sim-
ulations. Obviously, this would be of considerable help
for estimating the quality of the proposed approach to
crossover phenomena also in different situations, where
a numerical simulation is either very cumbersome or not
feasible at all.
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APPENDIX A: TWO- AND THREE-POINT
VERTEX FUNCTIONS TO ONE-LOOP ORDER

For the sake of completeness, we list some important
explicit analytical results for the two- and three-point
vertex functions to one-loop order. The corresponding
Feynman diagrams are depicted in Fig. 4. Writing the
free propagator in the form

<4
[w—wi(@)]lw - w-(@)]

G(l)l (0)(_‘% —w) = (A1)

where w4 (q) represents the “dispersion relation” for the
“elementary excitations” of our model,

wx(q) = —ico (go Fy/To+ g+ qz) )

one finds for I'?Y, (q,w):

(A2)
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(@) =ro +¢* + w?/ck + 2goiw/co, (A3)
) = “°°° / / G, o) (k — /2, — w/2) G, (o) (k + a/2,v +w/2) (A4)
/ (gk) + w?/2¢2 + 2goiw/co — 292

Vro+ g2 + (q/2 —k)? [~w +wi(q/2+k) +wi(a/2 - k)] [-w +w_(q/2 + k) + wi(q/2 — k)]

1
otor@Zt 0 to(@Z-W[-wto (@2+K o (@z-K]

In the last step, we have performed the integration over the internal frequency v via the residue theorem.
As a special case, we list the result for vanishing external wave vector, q = 0, which enters the calculation of the

effective exponents:

= uoco

(A6)

w u Co
I'j;00,w) =1 + + 2g 0 /
21(0,w) = 7o o '_—_r0+go+k2ro+k2+ +go—
In order to calculate the renormalization constants, we may expand (A5) with respect to g% and w:

’U.O Co

% (qw)=ro| 1+ /
11(a,w) 0( 8ro /ro + g2 - +'_k2(r0+k2)
u Co
+2g - ° /
0 ( \/r0+g0+k2r0+k2
+(i1_ uoCO/ uocogo/
\/To+gg+k2 (ro + k2)2 \/ro+g0+k2(r0+k2

+¢2[1- uoco / B UgCo /
Vro+gi+ k2(r0 + k2)2 (ro+g% + lc2)3(r0 + k2)
ugco (qk)2 + 3uOCO (qk)2 O(w 3 q4) (AT)
« Vo + 5+ B0 + K)? N TET ES T R
Similarly, the three-point vertex function I'Y,(—q, —w; q/2,w/2;q/2,w/2) reads
() = —uo/2, (A8)

(d) = udct / / G, 10y (K — /2, — w/2) G2, (o) (K + Q/2, v + w/2) G2, (g (K, ) (A9)

-5 [\/ro (77 R S VR 7 R S E 7 ) | R R B YRSy
“elzt wr(@/2+ k) —wy (k)]l[—w/z T wi(a/2 T k) —w_ (k)]
Vor: - (@2~ k)2 [~w + wi (/2 + ) + w_(a/2 - oo @ T @ %)
ozt o_(a/2—k) +ws (k)]lt—w/z Two_(a/2 - k) + w_ (k)]
* \/%I [Fw/2 +wi(a/2+K) - w+<k)]1[—w/2 tw(a/2+K) —wy ()]

! } . (A10)

X
[Fw/2 + ws(a/2 — ) +w_(0)] [~w/2 + w_(a/2 — K) + w_ (K]
For the determination of the renormalization constant Z,, however, we merely need

I?,(0,0;0,0;0,0) = —I'9,(0,0;0,0;0,0)

- _ Yo 1_“060/ ! _ugc"/ ! . (A11)
2 4 Jerot+gi + R (ro+ k) 8 Ji \/(ro+ g5+ k)3 (ro +k?)
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APPENDIX B: FEYNMAN PARAMETER
INTEGRALS

Within the generalized minimal subtraction scheme de-
scribed above, the determination of the Z factors after
performing the frequency and momentum integration us-
ing the Feynman parametrization

1 L(r+s) 1 ' '(1-=z)* !

A8 " T(I0Gs) Jo GA+ (- (B

[I'(x) is Euler’s gamma function] leads to integrals of the
form (with odd integers m,n)

$m/2—1

1
d _
I5n(9) —/0 (1+mg2)(m+n_d)/2dw

_ g tm/2—1
=9 /0 A5 tymrn—ayz (B2)

for which one may immediately derive asymptotic rela-
tions for ¢ = 0 and g — o0, respectively [B(z,y) =
I'(z)I'(y)/T(z + y) denotes Euler’s beta function],

I5.n(0) = 2/m, (B3)

m n—d) _T3Iresd)

tim (™4 (0)] = B (5,75 T(mEp=d)

(B4)

For the calculation of the ¢ functions, the following for-
mulas are very useful:

I3n(9) = 612 15 1 (9) = T2 . 15(9), (Bs)
3[«1 = 98 14
“ o mn(go/1) = (m+n— d)ﬁ-’mﬂ,n(QO/ﬂ)- (B6)
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